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Abstract

Some new criteria for the global asymptotic stability of the equilibrium point for the bi-directional associative memory

neural networks with time varying delays are presented. The obtained results present the structure of linear matrix inequality which can be

solved efficiently. The comparison with some previously reported results in the literature demonstrates that the results in this paper provide

one more set of criteria for determining the stability of the bi-directional associative memory neural networks with delays.
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Neural networks have been extensively studied in
the past decade and have been used in various applica-
tions such as designing associative memories and solv-
ing optimization problems. Recently,
searchers have studied the stability properties of neu-

many re-

ral networks and presented various sufficient condi-
tions for the globally asymptotic stability of the equi-
librium point of different classes of neural networks.
On the other hand, the delayed versions of neural
networks have also been proved to be important for
solving some classes of motion-related optimization
problems. Some results concerning the dynamical be-
havior of neural networks with delays have been re-
ported“_5 1. In some of the recent research papers,
researchers have paid particular attention to the sta-
bility analysis of bi-directional associative memory
neural networks with time delays as this kind of neu-
ral networks has been shown to be a useful network
model for applications in pattern recognition, solving
optimization problems and so on* 1 Some results
of the global asymptotic/exponential stability of the
equilibrium point for bi-directional associative memory
(BAM) neural networks with constant delays can be
found in Refs. [3—9] which obtain some algebraic
inequalities. Although the suitability of the results in
Refs. [4—9] is improved by involving many un-
known parameters to be tuned, we have no systemat-
ic approach to adjust those parameters in advance,

and correspondingly it is difficult to check the valid-
ness of those results. Moreover, the results in Refs.
[3—9] ignore the sign difference of entries in connec-
tion matrix, and the effects of neuron excitatory and
inhibitory on the neural networks are not considered.
At present, linear matrix inequality (LMI) technique
has been used to tackle the stability problem of neural
networks, and the obtained results can be easy to
check and can eliminate the difference between neu-
ron excitatory and inhibitory on neural networkst 2],
Therefore, in this paper, we will present some new
sufficient conditions for the global asymptotic stability
of the BAM neural networks with multiple time vary-
ing delays using LMI technique.

1 Problem description and preliminaries

Consider the following BAM neural networks
with multiple time varying delays:
a;(t) == au/t)

m

+ Zbijéj(lvj(l - 'L"z']'(t))) + Ui’
’ i=1,-,n,
0,(¢) =~ cu,(t)
F20d ] G = 2, + T,
L= L m, (1)

where u,, v; are the states of neurons; a; >0 and ¢;
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>0 denote the neuron charging time constants and
passive decay rate, respectively; bij, d ;i are synaptic
connection strengths; éj( +) and f,(*) represent the
activation functions of the neurons; U,, J ; are the
external constant inputs; 7, (7) =0, z; (1) =0,
t;(¢)and #;(¢) denote the change rate of 7,;(¢) and

z; (1), respectively, i =1, n,j=1,,m.

Assumption 1. The bounded activation functions
éj( *), £, (+) satisfy the following conditions

o L-e
O<fk(§;:~?z($)<é\£’

for §, €7, £7#¢ and for some &* >0, 8, >0,% =1,

7

"',?’l,jzl,"',m-

Let A, = diag (8%, =+, &%) € @""", A, =
diag( 6‘{, s é‘,f) €R""". Obviously, positive diago-

nal matrices A, and A ¢ are all non-singular.

Lemma 12!, For two vectors X and Y with
compatible dimensions, and two matrices P, Q0= QT
>0 with compatible dimensions, the following in-
equality holds

- x'9x +2x"Py < Y'P"Q 'PY.

To proceed conveniently, let I denote an identi-
ty matrix with compatible dimension, let u* = (u, ,
“,u ) and v = (vy, -, v, )" denote the equi-
librium point of model (1), B = (b;)xm» D=
(dy) s, A=diagla,, -, a,), C=diag(c,, -,
cul)i B;ER ™, whose ith row is composed by the
ith row of B, and the other rows are zeros; D, c
A" ", whose Jth row is composed by the jth row of

D, and the other rows are zeros, i =1, ---, n,j=1,
m

Letx(2)=u(t)—u" and y(z)=v(s)~v*.
Then model (1) is transformed to the following
form:

22

(1) == ax () + DJog (v (¢~ 3(1))),

i=1
i =1, ,n,
).’i(l‘) = C,'y,'(t) + Zdi_,'fj(lj(t - zz’;(t)))’
s=1 i
i =1, m, (2)

or

x(t) =— Ax(¢) + Zn)ng(y(t -7(1))),

y(t) =—Cy(z) + iDjf(x(t -z;(¢))), (3)
where ]1
gly(t —7;(£))) = (g,(3, (¢ = 7,1 (£))), -,
2, (3, (2 = 7, (O,
Flx(e = 2,())) = (f1(x, (2 = 2,
Ful, (2 = 2, )INT,
- 7;()))
=g (3t — () + v ) - g (v]),
Fulae(t = 2()))
= filxe(t - 2, (1)) + up ) - filug),
j=1,,n, kb=1,",m.
Clearly, activation functions g,(*) and £, () also

g[(yi(t

satisfy Assumption 1.

Theorem 1. Suppose that ¢,(7)<1 and #;(z)
<1. If the {ollowing linear matrix inequalities

~

~2PA + >JAFA, PB, - PB,
=y
B'P ~ 7E, - 0 |<o,
i B.P 0 - 1.E,
~20C+ 2;AEA, 9D, - 0D,
=1
D1TQ - UiFl 0 <0
i D0 0 =~ 1.F,
(4)
have positive definite symmetric matrices P, Q, posi-

, F_, then

tive diagonal matrices E,, -+, E_, F,, -, F,

the origin of system (3) is globally asymptotically
stable, and is independent of the magnitude of time
varying delays, where
7: = min(1 — e: (1)), 77]2 = min(1 - 2,,(1)),
Fj = diag(fu,"',f,,,), E, = diag(eil,
i =1,

e Y,

sn, j=1,,m.

Proof. Consider the
Krasovskii functional;

VI(x(t),y(e)) = xT()Px(t) + y (£)Qy(s)

n m

.S Eji e (9))ds

i=1 ;=1

following Lyapunov-

! Ezf:_: (t)fifsz'(lj(s))ds. (5)

i=1 j=1
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The derivative of (3) along the trajectories of (3) is
V(x(2),y(2)) <-2xT(£)PAx(2) + 2x (2)

y PZng(y(t - 7,(2)))
~2y"(1)QCy (1) +2y™(¢)
Q2D f(x(t = 2,(1))

n

(g™ (y(t)Eg(y(z))

1=1

— %Nyt~ 7,())Eg(y(t — 7,(¢)))]
+ Z[fT(x(t))Fj(x(t))

2 (x(t - 2, (DNFSf(x (e = 2,(D)].
(6)

By Lemma 1 and Assumption 1, the following in-

+

equalities hold,

2xT(r)PZB,-g(y(t ~1,(2)))

- unzg T(y(t = 7,(8)))
. Ez-g(y(t —1,(1)))

< D) LT PBEBPx(), (7
=1 7

mn

2yT(t)QZDJ(x(t - z2,())

- me (x(t —2z,(2)))
Fj(x(z‘ - z,(2)))

< 3 LT (pE Doy, (8)

=17
Zg%y(r))E,-g(y(z))

Zyr(t)AgE,A y(¢), 9
ZfT(X(t))F,-f(x(z))

ﬁ)xT(z)AfFAfx(t) (10)

Substituting (7)—(10) into (6) yields
Vix(e),y(t)) < «x (t)[— 2PA

+E—PBE 'BP + Y‘AfFA} ()

i=1 7 i=1

+yT(t)[ 20C + Z ZQDF_IDQ

© S AEA, (). (11)

If the following inequalities hold,

—2QC+Z QDF DQ+Y‘AgEA <0,

i=1

(12)

n

—2PA + >, %PB,.E,._IB{TP + ‘“AfFA <0,
=1 7; i=1

(13)
then for any x(2)70 or y(¢)7#0, V(x(z)}, y{(¢))
<0. V(x(z),y(2))=0 only and if only x(¢) =
y(2)=0. Since V(x(z), y(¢)) is radically un-
bounded, then by Lyapunov stability theory, the ori-
gin of system (3), or equivalently the equilibrium
point of system (1), is globally asymptotically stable,
and independent of the magnitude of time varying de-
lays. By Schur complement[n], conditions (12) and
(13) are equivalent to conditions (4). The proof of

Theorem 1 is completed.

When ri](t)= rj(t) and zij(t)=zj(t) in (2),
(3) is replaced by the following expression,
£(1) =— Ax(t) + Bg(y(z — (1)),
y(r) == Cy(z) + Df(x(z — z(2))), (14)
where
(1) = (z(2), ,T,,,(t)) € !,
2(t) = (z,(£), 5, NT € A,
B = (b)), D=1(d)
Now, we will obtain the following stability results for
system (14).

mxn'

Corollary 1. Suppose that #;(z) <1 and %; (1)
<1 in (14). If the following matrix inequalities
_2PA + SPBE'B"P + AFA, < 0,
Ui

-20C + %QDF‘IDTQ + AEA, <0, (15)
7

have positive definite symmetric matrices P, Q and
positive diagonal matrices E, F, then the origin of
system (14) is globally asymptotically stable, and is

independent of the magnitude of time varying delays,

where
771 :mln(l_fj(t)), 772:rn-u’l(l—z,(t)),
i=1,",n, j=1,",m.
Proof. Consider the following Lyapunov-

Krasovskii functional,

Vix(2),y(t)) = x (1)Px(z) + y'(£)Qy(2)

m

" let,, (,)efgf(yj(s))ds
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w2
i=1 t—z}(t

)f,f?(xj(s))ds. (16)

The derivative of (16) along the trajectories of (14)
is

V(x(1),y(£)) <~ 2x"(+)PAx (1)
+2x7(£)PBg(y (s — 7(2)))
—2y7()QCy (1) + 2y (1) QDf(x(t — 2(1)))
+ g (y(1))Eg(y(1))
—7'g (y(r — £(£)))Eg(y(t — 7(1)))
+ fT(x () FF(x (1))
- fT(x (e = 2 (ONFF(x (G — 2())). (17)

By Lemma 1 and Assumption 1, the following in-
equalities hold,

2x"(¢)PBg(y(t — 7(1)))
~ 7'g"(y(t = t(+)))Eg(y(t — ©(1)))
< LxT()PBE ' B Px (1), (18)

7
2y ()QDf(x(1 — 2(1)))
— N x (= (D) Ff(x(t — 2(1)))

< #y%)QDFlDTQy(r), (19)

g (y())Eg(y()) <y (1)AEA (1), (20)
ST FF(x(0) < s (DAFAx(2). (21)
Substituting (18)—(21) into (17) yields

Vx(e), y(1)) < xT(0)] - 2pa

+ LPBE'B"P + AfFAf]x(t)
. .

+ yT(t)[— 20C + %QDF*IDTQ
U]

+ AgEAg]y(t). (22)

The remainder is in the similar way to the proof of
Theorem 1. Therefore, if condition (15) holds, then
the origin of system (14) is globally asymptotically
stable, and independent of the magnitude of time
varying delays.

When 7, (£) = (#) 20 and 2, (¢) = 2(¢) >0
in (2), (3) is replaced by the following expression:
x(2) =— Ax(1) + Bg(y(t - =(1))),

(1) == Cy(1) + Df(x(t — =(2))). (23)
Next, we will give the following stability result for
system (23).

Theorem 2. Suppose that #(¢r)<1 and £ (1)<
1. If the following inequalities

~2HCA,;' + E + B"P(2PA) 'PB/ '
+ HDF'D"H/ 7" < 0,

~2LAA' + F + DTQ(20C) ' oD/ 7’

+ LBE"'B"L/4' <0, (24)
have positive definite symmetric matrices P, Q, E,
F, positive diagonal matrices H = diag (H, -,
H,), L=diag(L,, -, L,), then the origin of sys-
tem (23) is globally asymptotically stable, and inde-
pendent of the magnitude of time varying delay,
where 111:1"f(t), 172:1—i(z‘).

Consider the

Krasovskii functional,

V(x(t),y(£)) = x"(t)Px(2) + y (£)Qy(1)

m V(I) n I(I‘)

+22f ngj(s)ds+2§J

] TG+ B ()

Proof. following Lyapunov-

"y ’ L )d
0 0 }f;(s *

+ J’_N( )fT(x(s))(FO + F)f(x(s))ds, (25)

where E, F, will be defined later. The derivative of
(25) along the trajectories of (23) is
Vix(r),y(2)) = 2x"(t)P[~ Ax (1)

+ Bg(y(r — (¢)))]

+y)Q[- Cy(e) + DfF(x(t — 2(1)))]

+2g (y(t))HI[- Cy(1) + Df(x(t — =(£)))]
+2f N (x(£))LI- Ax (1) + Bg(y(t - «(¢)))]
+ g (y()NE + E)gly(t))

~7'g (3t = c(E + E)g(y(r — (1))

+ T (O)F + FOf(x(2))

— 7Tkt = 2(DODF + F)f(x (2 — 2(1))).
(26)

By Lemma 1 and Assumption 1, the following in-
equalities hold:

—2x"(¢)PAx(z) + 2xT () PBg(y(t — (1))
<g'(y(zr - c()B"PQ2PA)!
* PBg(y(: — (t))), (27)
- 2y7 () QCy (1) + 2yT (1) QDf(x (1 — =(1)))
< SN(x(t — 2())NDTQ(20C) !
- ODf(x(r — 2(1))), (28)
2" (y(e))HDF(x(t — =(1)))
— 7 x (= =N)FF(x(t = 2(2)))

< #gT(y(t))HDF"lDTHg(y(t)), (29)
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2fT(x(¢))LBg(y(t — z(1)))
- vlgT(y(t —(t)))Eg(y(r — z(t)))
<$fT<x<z>>LBE1BTLf<x<t)>. (30)

Let
E, = %BTP(sz)‘IPB,
U
_ 1ot -1
F,= D 'H(2HC) 'HD. (31)

7
Then substituting (27)—(31) into (26) yields,
V(x(2),y(2)) = g (y(£))(~ 2HCA,'
+ E + B"P(2PA)'PB/ 7'

+ HDF 'D"H/7")g(y(1))

+ N (x(2))(-2LAA  + F

+D'Q(20C) ™' gD/

+ LBE'B'L/9")f(x(2)).  (32)
If condition (24) holds, then V{x(z), y(£))<0 for

Vx(t)70 and Vy(z)0. The rest is similar to
the proof of Theorem 1. This completes the proof.

If we take another kind of processing method,
we will have the following result for system (23).

Theorem 3. Suppose that #(z)<1 and £(z)<
1. If the following inequalities

~2HCA]' -~ A'QCA;' + E + B"P(2PA)'PB/y' + HDF'D"H/ ¢’ < 0,
~2LAA;' -~ A;'PAA;' + F + DTQ(QC)™'QD/7’ + LBE'B'L/7 <0, (33)

have positive diagonal matrices P, Q, H = diag( H,,
-, H,_ ), L =diag (L,
symmetric matrices E, F, then the origin of system
(23) is globally asymptotically stable, and indepen-
dent of the magnitude of time varying delay, where

pl=1-(0), ¥ =1-2(1).

-+, L), positive definite

Proof. Consider the Lyapunov-Krasovskii func-
tional (25), where Eg, F, will be defined later. The
derivative of (25) along the trajectories of (23) is the

same as (26).

By Lemma 1 and Assumption 1, the following
inequalities hold: \
— xN()PAx (1) + 2x () PBg(y(t — (1))

<g"(y(t — = (t)))B"P(PA)!
- PBg(y(t — (1)), (34)
— yN()QCy (1) + 2y (1) QDf(x (¢t — =(£)))
< fM(x(t - z()))DP"QgC)™
- ODf(x(t — =(£))), (35)
2 (y(¢))HDf(x(t — z(1)))
— N x (e = = () Ff(x(z = =(2)))

< Le"(y(:)HDF D Hg(y(1)),  (36)
7
2T (x () LBg(y(t — (1))
- qlgT(y(t — () Eg(y(t — z(2)))
< L (x(:)LBE'BTLf(x(2)), (37
7

— x"(1)PAx(t)
< fT(x())A,'PAA L f(x (1)), (38)

-y ()QCy(1)
<- g (y(1))A,'QCA g (y(2)). (39)
Let
E, = SBTP(PA) 'PB,
7
F, = 5D"H(HC) 'HD. (40)
7

Then substituting (34)—{(40) into (26) yields,
Vx(r),y(1)) = g (y(x))(~ 2HCA,
~A;'QcA,' + E + BTP(PA)'PB/y'
+ HDF 'D"H/7")g(y(1))
+ fT(x(6))(~2LAA,' - A['PAA L
+F+D"Q(Qc)'ep/y’
+ LBE'BTL/ ") f(x(1)). (41)
If condition (33) holds, then V{(x(z), y(2))<0 for

Vx(t)7#0 and VY y(z)70. The rest is similar to
the proof of Theorem 1. This completes the proof.

Remark 1. Theorem 1 has a wider range of ap-
plication than Corollary 1, Theorem 2 and Theorem 3
because model (1) is more general than models (14)
and (23). That is to say, Corollary 1, Theorem 2
and Theorem 3 are not suitable for model (1), while
Theorem 1 can be applied to models (14) and (23).

Remark 2. Model (1) with constant delays has
also been studied in Refs. [3,7]. Theorem 1 in Ref.
[3] provides a simple criterion to guarantee the global
asymptotic stability for model (1), but the sign dif-
ference of entries in connection matrix is ignored and
the effects of neuron excitatory and inhibitory on neu-
ral networks is not considered. Theorem 2 in Ref.
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[7] gives a sufficient condition guaranteeing the glob-
al exponential stability of model (1) based on an alge-
braic inequality. Although the suitability of the crite-
rion in Ref. [7] is improved due to involving many
parameters to be tuned, it is not easy to verify this
criterion by efficiently choosing unknown parameters
because we have no a systematic approach to tune
those parameters in advance. Theorem 1 in the pre-
sent paper is obtained via linear matrix inequality
(LMI) technique, therefore, it is easy to be verified
and the sign difference of connection matrix is elimi-
nated. Therefore, Theorem 1 in the present paper
overcomes the shortcomings of the results in Refs.
[3,7]. Some sufficient conditions guaranteeing the
global asymptotic stability of model (23) with con-
stant delay are derived from Refs. [5, 6, 8, 9] based
on some algebraic inequality techniques. However,
the obtained results in the present paper generalize
and improve the results in Refs. [5,6,8,9] in the as-
pects of complexity of network model, verification of
the stability result and neuron excitatory and inhibito-
ry on neural networks.

Remark 3. Model (23) with constant delay is
also studied in Ref. [4]. f welet P=Q=E=F=
H =L =1I in Theorem 2, then (24) is just the result
of Theorem 1 and Theorem 2 in Ref. [4]. There-
fore, the results in Ref. [4] are special cases of our
result Theorem 2.

2 Numerical example

Consider the following bi-directional associative
memory neural networks with constant delays:

x(t) =— Ax(z) + Bg(y(r — 7)) + U,

y(t) == Cy(t) + Df(x(t — 2)) +J, (42)

where A = C =21, B:D:[C ¢ ] g (u)=
C - C

fj(uj):0.5(|u]+1| - |”j_1|)’ U, J are real
column vectors with 2 X 1 dimensions, 7 >0, z >0
are any bounded and constant delays, respectively. If
we choose P=Q =1I,E,=F,=1,i=1,2, in Theo-
rem 1 of the present paper, then in order to guarantee
the hold of Theorem 1, ¢ must satisfy |c|<1. Per-
taining to this example, Theorem 1 in Ref. [3] holds
if and only if [¢|<1. Similarly, the results in Refs.
[5,6] also require | ¢ | <1. Obviously, Theorem 1 in
the present paper and Theorem 1 in Ref. [3], results
in Refs. [5, 6] provide different sufficient conditions
for the stability of the BAM system defined by (42).

In Theorem 3 of the present paper, if we choose P =

Q=E=F=H=L=1, then we have |¢|< J5/3.
Thus, it can be conclude that if |¢|==1, the results
in Refs. [3,5,6] are not satisfied, whereas the con-
ditions of Theorem 3 in the paper still hold for 1<

lc1<J/5/3.

3 Conclusions

The principle contribution of this paper is the re-
sults that ensure the global asymptotic stability of
BAM neural networks with time varying delays. The
obtained results establish a relationship between the
network parameters of neural networks independent
of the magnitude of time varying delays. Further, the
obtained results possess the structure of linear matrix
inequality (LMI), so they can be easily verified. A
comparison between the obtained results and the pre-
vious results has also been made to show the effective-
ness of the obtained results.
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